🐝
Mess around software system design
  • README
  • ArchitectureTradeOffAnalysis
    • Estimation
    • Middleware
    • Network
    • Server
    • Storage
  • Conversion cheat sheet
  • Scenarios
    • TinyURL
      • Estimation
      • Flowchart
      • Shortening mechanisms
      • Rest API
      • Performance
      • Storage
      • Follow-up
    • TaskScheduler
      • JDK delay queue
      • Timer based
      • RabbitMQ based
      • Kafka-based fixed delay time
      • Redis-based customized delay time
      • MySQL-based customized delay time
      • Timer TimingWheel
      • Industrial Scheduler
      • Workflow Engine
      • Airflow Arch
    • GoogleDrive
      • Estimation
      • Flowchart
      • Storage
      • Follow-up
    • Youtube
      • Estimation
      • Flowchart
      • Performance
      • Storage
      • Follow-up
      • Netflix
    • Uber
      • Estimation
      • Rest api
      • Flowchart
      • KNN algorithms
      • Geohash-based KNN mechanism
      • Redis implementation
      • Storage
    • Twitter
      • Estimation
      • Flowchart
      • Storage
      • Scalability
      • Follow-up
    • Instant messenger
      • Architecture overview
      • Presence
      • Unread count
      • Notifications
      • Read receipt
      • Large group chat
      • Storage-Offline 1:1 Chat
      • Storage-Offline group chat
      • Storage-Message roaming
      • NonFunc-Realtime
      • NonFunc-Reliability
      • NonFunc-Ordering
      • NonFunc-Security
      • Livecast-LinkedIn
    • Distributed Lock
      • Single machine
      • AP model based
      • CP model based
      • Chubby-TODO
    • Payment system
      • Resilience
      • Consistency
      • Flash sale
    • Key value store
      • Master-slave KV
      • Peer-to-peer KV
      • Distributed cache
  • Time series scenarios
    • Observability
      • TimeSeries data
      • Distributed traces
      • Logs
      • Metrics
      • NonFunc requirments
  • Search engine
    • Typeahead
    • Search engine
    • Distributed crawler
      • Estimation
      • Flowchart
      • Efficiency
      • Robustness
      • Performance
      • Storage
      • Standalone implementation
      • Python Scrapy framework
    • Stream search
  • Big data
    • GFS/HDFS
      • Data flow
      • High availability
      • Consistency
    • Map reduce
    • Big table/Hbase
    • Haystack
    • TopK
    • Stateful stream
    • Lambda architecture
    • storm架构
    • Beam架构
    • Comparing stream frameworks
    • Instagram-[TODO]
  • MicroSvcs
    • Service Registry
      • Flowchart
      • Data model
      • High availability
      • Comparison
      • Implementation
    • Service governance
      • Load balancing
      • Circuit breaker
      • Bulkhead
      • Downgrade
      • Timeout
      • API gateway
      • RateLimiter
        • Config
        • Algorithm comparison
        • Sliding window
        • Industrial impl
    • MicroSvcs_ConfigCenter-[TODO]
    • MicroSvcs_Security
      • Authentication
      • Authorization
      • Privacy
  • Cache
    • Typical topics
      • Expiration algorithm
      • Access patterns
      • Cache penetration
      • Big key
      • Hot key
      • Distributed lock
      • Data consistency
      • High availability
    • Cache_Redis
      • Data structure
      • ACID
      • Performance
      • Availability
      • Cluster
      • Applications
    • Cache_Memcached
  • Message queue
    • Overview
    • Kafka
      • Ordering
      • At least once
      • Message backlog
      • Consumer idempotency
      • High performance
      • Internal leader election
    • MySQL-based msg queue
    • Other msg queues
      • ActiveMQ-TODO
      • RabbitMQ-TODO
      • RocketMQ-TODO
      • Comparison between MQ
  • Traditional DB
    • Index data structure
    • Index categories
    • Lock
    • MVCC
    • Redo & Undo logs
    • Binlog
    • Schema design
    • DB optimization
    • Distributed transactions
    • High availability
    • Scalability
    • DB migration
    • Partition
    • Sharding
      • Sharding strategies
      • Sharding ID generator overview
        • Auto-increment key
        • UUID
        • Snowflake
        • Implement example
      • Cross-shard pagination queries
      • Non-shard key queries
      • Capacity planning
  • Non-Traditional DB
    • NoSQL overview
    • Rum guess
    • Data structure
    • MySQL based key value
    • KeyValueStore
    • ObjectStore
    • ElasticSearch
    • TableStore-[TODO]
    • Time series DB
    • DistributedAcidDatabase-[TODO]
  • Java basics
    • IO
    • Exception handling
  • Java concurrency
    • Overview
      • Synchronized
      • Reentrant lock
      • Concurrent collections
      • CAS
      • Others
    • Codes
      • ThreadLocal
      • ThreadPool
      • ThreadLifeCycle
      • SingletonPattern
      • Future
      • BlockingQueue
      • Counter
      • ConcurrentHashmap
      • DelayedQueue
  • Java JVM
    • Overview
    • Dynamic proxy
    • Class loading
    • Garbage collection
    • Visibility
  • Server
    • Nginx-[TODO]
  • Distributed system theories
    • Elementary school with CAP
    • Consistency
      • Eventual with Gossip
      • Strong with Raft
      • Tunable with Quorum
      • Fault tolerant with BFT-TODO
      • AutoMerge with CRDT
    • Time in distributed system
      • Logical time
      • Physical time
    • DDIA_Studying-[TODO]
  • Protocols
    • ApiDesign
      • REST
      • RPC
    • Websockets
    • Serialization
      • Thrift
      • Avro
    • HTTP
    • HTTPS
    • Netty-TODO
  • Statistical data structure
    • BloomFilter
    • HyperLoglog
    • CountMinSketch
  • DevOps
    • Container_Docker
    • Container_Kubernetes-[TODO]
  • Network components
    • CDN
    • DNS
    • Load balancer
    • Reverse proxy
    • 云中网络-TODO
  • Templates
    • interviewRecord
  • TODO
    • RecommendationSystem-[TODO]
    • SessionServer-[TODO]
    • Disk
    • Unix philosophy and Kafka
    • Bitcoin
    • Design pattern
      • StateMachine
      • Factory
    • Akka
    • GoogleDoc
      • CRDT
Powered by GitBook
On this page
  • ThreadLocal
  • Use case
  • Two ways to set threadlocal
  • Benefits
  • Internals

Was this helpful?

  1. Java concurrency
  2. Codes

ThreadLocal

PreviousCodesNextThreadPool

Last updated 3 years ago

Was this helpful?

ThreadLocal

Use case

Each thread needs a separate object

  • Usually applies to utility classes such as SimpleDateFormat

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * Description: SimpleDateFormat is not thread safe. If multiple threads try to use it, then non thread-safe behaviors might occur (e.g. in this case, printing the same timestamp)
 */
public class ThreadLocalNormalUsage05 {

    public static ExecutorService threadPool = Executors.newFixedThreadPool(10);

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1000; i++) {
            int finalI = i;
            threadPool.submit(new Runnable() {
                @Override
                public void run() {
                    String date = new ThreadLocalNormalUsage05().date(finalI);
                    System.out.println(date);
                }
            });
        }
        threadPool.shutdown();
    }

    public String date(int seconds) {
        // The unit for Date is ms, start counting from 1970.1.1 00:00:00 GMT 
        Date date = new Date(1000 * seconds);

        // Use thread local to get a thread safe DateFormat entity
        // SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        SimpleDateFormat dateFormat = ThreadSafeFormatter.dateFormatThreadLocal2.get();
        return dateFormat.format(date);
    }
}

class ThreadSafeFormatter {

    public static ThreadLocal<SimpleDateFormat> dateFormatThreadLocal = new ThreadLocal<SimpleDateFormat>() {
        @Override
        protected SimpleDateFormat initialValue() {
            return new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        }
    };

    public static ThreadLocal<SimpleDateFormat> dateFormatThreadLocal2 = ThreadLocal
            .withInitial(() -> new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"));
}

Avoid to always pass parameters

  • Within the same thread, want to share a variable between different methods. Could use threadlocal to pass. E.g. UserId, tenantId

  • Other approaches:

    • Declare a static global variable: Not working because each request will have a different argument (e.g. userId, tenantId). The scope needs to be per request.

    • Use synchronized / concurrentHashmap (Thread->userId/tenantId mapping). Will have performance cost anyways.

public class ThreadLocalNormalUsage06 {

    public static void main(String[] args) {
        new Service1().process("");

    }
}

class Service1 {

    public void process(String name) {
        User user = new User("Bruce");
        UserContextHolder.holder.set(user);
        new Service2().process();
    }
}

class Service2 {

    public void process() {
        User user = UserContextHolder.holder.get();
        System.out.println("Service2 gets username:" + user.name);
        new Service3().process();
    }
}

class Service3 {

    public void process() {
        User user = UserContextHolder.holder.get();
        System.out.println("Service3 gets username:" + user.name);
        UserContextHolder.holder.remove();
    }
}

class UserContextHolder {

    public static ThreadLocal<User> holder = new ThreadLocal<>();


}

class User {

    String name;

    public User(String name) {
        this.name = name;
    }
}public class ThreadLocalNormalUsage06 {

    public static void main(String[] args) {
        new Service1().process("");

    }
}

Two ways to set threadlocal

  • Use InitialValue when you could decide what value to set during construction of ThreadLocal.

  • Use Set when you could only determine the usage at runtime.

Benefits

  • Thread safe

  • No locking required

  • Use memory more efficiently to avoid creating new objects for each request

  • Avoid passing repetitive parameters

Internals

  • Each thread will contain a threadLocalMap

  • Each threadLocal map could contain multiple threadLocal key value pairs.

ThreadLocal
Use case
Each thread needs a separate object
Avoid to always pass parameters
Two ways to set threadlocal
Benefits
Internals