🐝
Mess around software system design
  • README
  • ArchitectureTradeOffAnalysis
    • Estimation
    • Middleware
    • Network
    • Server
    • Storage
  • Conversion cheat sheet
  • Scenarios
    • TinyURL
      • Estimation
      • Flowchart
      • Shortening mechanisms
      • Rest API
      • Performance
      • Storage
      • Follow-up
    • TaskScheduler
      • JDK delay queue
      • Timer based
      • RabbitMQ based
      • Kafka-based fixed delay time
      • Redis-based customized delay time
      • MySQL-based customized delay time
      • Timer TimingWheel
      • Industrial Scheduler
      • Workflow Engine
      • Airflow Arch
    • GoogleDrive
      • Estimation
      • Flowchart
      • Storage
      • Follow-up
    • Youtube
      • Estimation
      • Flowchart
      • Performance
      • Storage
      • Follow-up
      • Netflix
    • Uber
      • Estimation
      • Rest api
      • Flowchart
      • KNN algorithms
      • Geohash-based KNN mechanism
      • Redis implementation
      • Storage
    • Twitter
      • Estimation
      • Flowchart
      • Storage
      • Scalability
      • Follow-up
    • Instant messenger
      • Architecture overview
      • Presence
      • Unread count
      • Notifications
      • Read receipt
      • Large group chat
      • Storage-Offline 1:1 Chat
      • Storage-Offline group chat
      • Storage-Message roaming
      • NonFunc-Realtime
      • NonFunc-Reliability
      • NonFunc-Ordering
      • NonFunc-Security
      • Livecast-LinkedIn
    • Distributed Lock
      • Single machine
      • AP model based
      • CP model based
      • Chubby-TODO
    • Payment system
      • Resilience
      • Consistency
      • Flash sale
    • Key value store
      • Master-slave KV
      • Peer-to-peer KV
      • Distributed cache
  • Time series scenarios
    • Observability
      • TimeSeries data
      • Distributed traces
      • Logs
      • Metrics
      • NonFunc requirments
  • Search engine
    • Typeahead
    • Search engine
    • Distributed crawler
      • Estimation
      • Flowchart
      • Efficiency
      • Robustness
      • Performance
      • Storage
      • Standalone implementation
      • Python Scrapy framework
    • Stream search
  • Big data
    • GFS/HDFS
      • Data flow
      • High availability
      • Consistency
    • Map reduce
    • Big table/Hbase
    • Haystack
    • TopK
    • Stateful stream
    • Lambda architecture
    • storm架构
    • Beam架构
    • Comparing stream frameworks
    • Instagram-[TODO]
  • MicroSvcs
    • Service Registry
      • Flowchart
      • Data model
      • High availability
      • Comparison
      • Implementation
    • Service governance
      • Load balancing
      • Circuit breaker
      • Bulkhead
      • Downgrade
      • Timeout
      • API gateway
      • RateLimiter
        • Config
        • Algorithm comparison
        • Sliding window
        • Industrial impl
    • MicroSvcs_ConfigCenter-[TODO]
    • MicroSvcs_Security
      • Authentication
      • Authorization
      • Privacy
  • Cache
    • Typical topics
      • Expiration algorithm
      • Access patterns
      • Cache penetration
      • Big key
      • Hot key
      • Distributed lock
      • Data consistency
      • High availability
    • Cache_Redis
      • Data structure
      • ACID
      • Performance
      • Availability
      • Cluster
      • Applications
    • Cache_Memcached
  • Message queue
    • Overview
    • Kafka
      • Ordering
      • At least once
      • Message backlog
      • Consumer idempotency
      • High performance
      • Internal leader election
    • MySQL-based msg queue
    • Other msg queues
      • ActiveMQ-TODO
      • RabbitMQ-TODO
      • RocketMQ-TODO
      • Comparison between MQ
  • Traditional DB
    • Index data structure
    • Index categories
    • Lock
    • MVCC
    • Redo & Undo logs
    • Binlog
    • Schema design
    • DB optimization
    • Distributed transactions
    • High availability
    • Scalability
    • DB migration
    • Partition
    • Sharding
      • Sharding strategies
      • Sharding ID generator overview
        • Auto-increment key
        • UUID
        • Snowflake
        • Implement example
      • Cross-shard pagination queries
      • Non-shard key queries
      • Capacity planning
  • Non-Traditional DB
    • NoSQL overview
    • Rum guess
    • Data structure
    • MySQL based key value
    • KeyValueStore
    • ObjectStore
    • ElasticSearch
    • TableStore-[TODO]
    • Time series DB
    • DistributedAcidDatabase-[TODO]
  • Java basics
    • IO
    • Exception handling
  • Java concurrency
    • Overview
      • Synchronized
      • Reentrant lock
      • Concurrent collections
      • CAS
      • Others
    • Codes
      • ThreadLocal
      • ThreadPool
      • ThreadLifeCycle
      • SingletonPattern
      • Future
      • BlockingQueue
      • Counter
      • ConcurrentHashmap
      • DelayedQueue
  • Java JVM
    • Overview
    • Dynamic proxy
    • Class loading
    • Garbage collection
    • Visibility
  • Server
    • Nginx-[TODO]
  • Distributed system theories
    • Elementary school with CAP
    • Consistency
      • Eventual with Gossip
      • Strong with Raft
      • Tunable with Quorum
      • Fault tolerant with BFT-TODO
      • AutoMerge with CRDT
    • Time in distributed system
      • Logical time
      • Physical time
    • DDIA_Studying-[TODO]
  • Protocols
    • ApiDesign
      • REST
      • RPC
    • Websockets
    • Serialization
      • Thrift
      • Avro
    • HTTP
    • HTTPS
    • Netty-TODO
  • Statistical data structure
    • BloomFilter
    • HyperLoglog
    • CountMinSketch
  • DevOps
    • Container_Docker
    • Container_Kubernetes-[TODO]
  • Network components
    • CDN
    • DNS
    • Load balancer
    • Reverse proxy
    • 云中网络-TODO
  • Templates
    • interviewRecord
  • TODO
    • RecommendationSystem-[TODO]
    • SessionServer-[TODO]
    • Disk
    • Unix philosophy and Kafka
    • Bitcoin
    • Design pattern
      • StateMachine
      • Factory
    • Akka
    • GoogleDoc
      • CRDT
Powered by GitBook
On this page
  • Web server
  • Web/Application servers criteria
  • Calculation rules
  • From C10K to 10M
  • Nginx performance

Was this helpful?

  1. ArchitectureTradeOffAnalysis

Server

PreviousNetworkNextStorage

Last updated 3 years ago

Was this helpful?

Web server

Web/Application servers criteria

Deployment
Capacity / Performance
Other criteria

Load balance strategy

Total traffic per day

GC configuration

High availability strategy

Peak traffic

IO mode (BIO/NIO)

Average response time

Thread pool model

Max response time

Num of threads in pool

Concurrent online users

Mixed app deployment

Request size

Disk IO load

Network IO load

Memory usage

CPU usage

Calculation rules

RPS estimation due to different resource bound

  • I/O bound: RPS = (memory / worker memory) * (1 / Task time)

  • CPU bound: RPS = Num. cores * (1 /Task time)

From C10K to 10M

  • A decade ago engineers tackled the C10K scalability problems that prevented servers from handling more than 10,000 concurrent connections. This problem was solved by fixing OS kernels and moving away from threaded servers like Apache to event-driven servers like Nginx and Node. This process has taken a decade as people have been moving away from Apache to scalable servers.

10K Definition

  • Handle 10,000 concurrent connections

    • vs RPS:

      • RPS requires high throughput (Process them quickly).

      • A system which could handle high number of connections is not necessarily a high throughput system.

  • This became known as the C10K problem. Engineers solved the C10K scalability problems by fixing OS kernels and moving away from threaded servers like Apache to event-driven servers like Nginx and Node.

C10M

Nginx performance

Benchmark

  • https://gist.github.com/denji/8359866

  • Generally, properly configured nginx can handle up to 400K to 500K requests per second (clustered), most what i saw is 50K to 80K (non-clustered) requests per second and 30% CPU load, course, this was 2 x Intel Xeon with HyperThreading enabled, but it can work without problem on slower machines.

Real production traffic

  • 1,000 RPS is not difficult to achieve on a normal server for a regular service.

  • 2,000 RPS is a decent amount of load for a normal server for a regular service.

  • More than 2K either need big servers, lightweight services, not-obvious optimisations, etc (or it means you’re awesome!). Less than 1K seems low for a server doing typical work (this means a request that is simple and not doing a lot of work) these days.

  • For a 32 core 64GB machine, it could at mmost process 20K "hello world" per second. For the actual business logic, the RPS will be much lower, several hundreds per second.

Web server
Web/Application servers criteria
Calculation rules
From C10K to 10M
10K Definition
C10M
Nginx performance
Benchmark
Real production traffic
http://www.kegel.com/c10k.html
http://highscalability.com/blog/2013/5/13/the-secret-to-10-million-concurrent-connections-the-kernel-i.html
I/O bound
CPU bound